Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Toxins (Basel) ; 16(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38668595

RESUMO

Ciguatera poisoning (CP) is the most common type of marine biotoxin food poisoning worldwide, and it is caused by ciguatoxins (CTXs), thermostable polyether toxins produced by dinoflagellate Gambierdiscus and Fukuyoa spp. It is typically caused by the consumption of large fish high on the food chain that have accumulated CTXs in their flesh. CTXs in trace amounts are found in natural samples, and they mainly induce neurotoxic effects in consumers at concentrations as low as 0.2 µg/kg. The U.S. Food and Drug Administration has established CTX maximum permitted levels of 0.01 µg/kg for CTX1B and 0.1 µg/kg for C-CTX1 based on toxicological data. More than 20 variants of the CTX1B and CTX3C series have been identified, and the simultaneous detection of trace amounts of CTX analogs has recently been required. Previously published works using LC-MS/MS achieved the safety levels by monitoring the sodium adduct ions of CTXs ([M+Na]+ > [M+Na]+). In this study, we optimized a highly sensitive method for the detection of CTXs using the sodium or lithium adducts, [M+Na]+ or [M+Li]+, by adding alkali metals such as Na+ or Li+ to the mobile phase. This work demonstrates that CTXs can be successfully detected at the low concentrations recommended by the FDA with good chromatographic separation using LC-MS/MS. It also reports on the method's new analytical conditions and accuracy using [M+Li]+.


Assuntos
Ciguatoxinas , Espectrometria de Massas em Tandem , Ciguatoxinas/análise , Cromatografia Líquida , Lítio/análise , Intoxicação por Ciguatera , Contaminação de Alimentos/análise , Limite de Detecção , Animais
2.
Toxins (Basel) ; 16(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38668614

RESUMO

Ciguatera Poisoning (CP) is an illness associated with the consumption of fish contaminated with potent natural toxins found in the marine environment, commonly known as ciguatoxins (CTXs). The risk characterization of CP has become a worldwide concern due to the widespread expansion of these natural toxins. The identification of CTXs is hindered by the lack of commercially available reference materials. This limitation impedes progress in developing analytical tools and conducting toxicological studies essential for establishing regulatory levels for control. This study focuses on characterizing the CTX profile of an amberjack responsible for a recent CP case in the Canary Islands (Spain), located on the east Atlantic coast. The exceptional sensitivity offered by Capillary Liquid Chromatography coupled with High-Resolution Mass Spectrometry (cLC-HRMS) enabled the detection, for the first time in fish contaminated in the Canary Islands, of traces of an algal ciguatoxin recently identified in G. silvae and G. caribeaus from the Caribbean Sea. This algal toxin was structurally characterized by cLC-HRMS being initially identified as C-CTX5. The total toxin concentration of CTXs was eight times higher than the guidance level proposed by the Food and Drug Administration (0.1 ng C-CTX1/g fish tissue), with C-CTX1 and 17-hydroxy-C-CTX1 as major CTXs.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Ciguatoxinas/análise , Espanha , Animais , Cromatografia Líquida , Espectrometria de Massas
3.
Toxins (Basel) ; 16(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393167

RESUMO

Ciguatoxins (CTXs) stand as the primary toxins causing ciguatera fish poisoning (CFP) and are essential compounds distinguished by their characteristic polycyclic ether structure. In a previous report, we identified the structures of product ions generated via homolytic fragmentation by assuming three charge sites in the mass spectrometry (MS)/MS spectrum of ciguatoxin-3C (CTX3C) using LC-MS. This study aims to elucidate the homolytic fragmentation of a ciguatoxin-3C congener. We assigned detailed structures of the product ions in the MS/MS spectrum of a naturally occurring ciguatoxin-3C congener, 51-hydroxyciguatoxin-3C (51-hydoxyCTX3C), employing liquid chromatography/quadrupole time-of-flight mass spectrometry with an atmospheric pressure chemical ionization (APCI) source. The introduction of a hydroxy substituent on C51 induced different fragmentation pathways, including a novel cleavage mechanism of the M ring involving the elimination of 51-OH and the formation of enol ether. Consequently, new cleavage patterns generated product ions at m/z 979 (C55H79O15), 439 (C24H39O7), 149 (C10H13O), 135 (C9H11O), and 115 (C6H11O2). Additionally, characteristic product ions were observed at m/z 509 (C28H45O8), 491 (C28H43O7), 481 (C26H41O8), 463 (C26H39O7), 439 (C24H39O7), 421 (C24H37O6), 171 (C9H15O3), 153 (C9H13O2), 141 (C8H13O2), and 123 (C8H11O).


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/análise , Espectrometria de Massas em Tandem/métodos , Intoxicação por Ciguatera/etiologia , Íons
4.
Toxins (Basel) ; 16(1)2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276536

RESUMO

Ciguatera, a global issue, lacks adequate capacity for ciguatoxin analysis in most affected countries. The Caribbean region, known for its endemic ciguatera and being home to a majority of the global small island developing states, particularly needs established methods for ciguatoxin detection in seafood and the environment. The radioligand receptor binding assay (r-RBA) is among the in vitro bioassays currently used for ciguatoxin analysis; however, similarly to the other chemical-based or bioassays that have been developed, it faces challenges due to limited standards and interlaboratory comparisons. This work presents a single laboratory validation of an r-RBA developed in a Cuban laboratory while characterizing the performance of the liquid scintillation counter instrument as a key external parameter. The results obtained show the assay is precise, accurate and robust, confirming its potential as a routine screening method for the detection and quantification of ciguatoxins. The new method will aid in identifying high-risk ciguatoxic fish in Cuba and the Caribbean region, supporting monitoring and scientific management of ciguatera and the development of early warning systems to enhance food safety and food security, and promote fair trade fisheries.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/análise , Intoxicação por Ciguatera/diagnóstico , Peixes , Ligação Proteica , Bioensaio
5.
Toxins (Basel) ; 15(11)2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37999493

RESUMO

The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new threat challenged scientists and regulators, as methods for toxic microalgae analyses and ciguatoxin (CTX) detection were not implemented. To minimise the risk of ciguatera, the Madeira Archipelago authorities interdicted fisheries in Selvagens Islands and banned the capture of amberjacks weighing more than 10 kg in the entire region of Madeira Archipelago. The accurate identification and quantification of the benthic toxin-producing algae species spreading to new areas require efforts in terms of both microscopy and molecular techniques. Two ciguatera-causing dinoflagellates, Gambierdiscus excentricus and Gambierdiscus australes, were identified in the Madeira Island and Selvagens sub-archipelago, respectively. Regarding the CTX analysis (N2a cell-based assay and LC-MS) in fish, the results indicate that the Selvagens Islands are a ciguatera risk area and that fish vectoring CTX are not limited to top predator species. Nevertheless, advances and improvements in screening methods for the fast detection of toxicity in seafood along with certified reference material and sensitive and selective targeted analytical methods for the determination of CTX content are still pending. This study aims to revise the occurrence of ciguatera cases in the Madeira Archipelago since its first detection in 2008, to discuss the risk management strategy that was implemented, and to provide a summary of the available data on the bioaccumulation of CTX in marine fish throughout the marine food web, taking into consideration their ecological significance, ecosystem dynamics, and fisheries relevance.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Humanos , Intoxicação por Ciguatera/epidemiologia , Portugal/epidemiologia , Ecossistema , Estudos Retrospectivos , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Peixes
6.
Toxins (Basel) ; 15(7)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37505722

RESUMO

Ciguatera is a major circumtropical poisoning caused by the consumption of marine fish and invertebrates contaminated with ciguatoxins (CTXs): neurotoxins produced by endemic and benthic dinoflagellates which are biotransformed in the fish food-web. We provide a history of ciguatera research conducted over the past 70 years on ciguatoxins from the Pacific Ocean (P-CTXs) and Caribbean Sea (C-CTXs) and describe their main chemical, biochemical, and toxicological properties. Currently, there is no official method for the extraction and quantification of ciguatoxins, regardless their origin, mainly due to limited CTX-certified reference materials. In this review, the extraction and purification procedures of C-CTXs are investigated, considering specific objectives such as isolating reference materials, analysing fish toxin profiles, or ensuring food safety control. Certain in vitro assays may provide sufficient sensitivity to detect C-CTXs at sub-ppb levels in fish, but they do not allow for individual identification of CTXs. Recent advances in analysis using liquid chromatography coupled with low- or high-resolution mass spectrometry provide new opportunities to identify known C-CTXs, to gain structural insights into new analogues, and to quantify C-CTXs. Together, these methods reveal that ciguatera arises from a multiplicity of CTXs, although one major form (C-CTX-1) seems to dominate. However, questions arise regarding the abundance and instability of certain C-CTXs, which are further complicated by the wide array of CTX-producing dinoflagellates and fish vectors. Further research is needed to assess the toxic potential of the new C-CTX and their role in ciguatera fish poisoning. With the identification of C-CTXs in the coastal USA and Eastern Atlantic Ocean, the investigation of ciguatera fish poisoning is now a truly global effort.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Intoxicação por Ciguatera/epidemiologia , Ciguatoxinas/análise , Saúde Pública , Peixes , Dinoflagelados/química , Região do Caribe
7.
Environ Res ; 228: 115869, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044166

RESUMO

Ciguatoxins (CTXs) are marine neurotoxins that cause ciguatera poisoning (CP), mainly through the consumption of fish. The distribution of CTXs in fish is known to be unequal. Studies have shown that viscera accumulate more toxins than muscle, but little has been conducted on toxicity distribution in the flesh, which is the main edible part of fish, and the caudal muscle is also most commonly targeted for the monitoring of CTXs in the Canary Islands. At present, whether this sample is representative of the toxicity of an individual is undisclosed. This study aims to assess the distribution of CTXs in fish, considering different muscle samples, the liver, and gonads. To this end, tissues from four amberjacks (Seriola spp.) and four dusky groupers (Epinephelus marginatus), over 16.5 kg and captured in the Canary Islands, were analyzed by neuroblastoma-2a cell-based assay. Flesh samples were collected from the extraocular region (EM), head (HM), and different areas from the fillet (A-D). In the amberjack, the EM was the most toxic muscle (1.510 CTX1B Eq·g-1), followed by far for the caudal section of the fillet (D) (0.906 CTX1B Eq·g-1). In the dusky grouper flesh samples, D and EM showed the highest toxicity (0.279 and 0.273 CTX1B Eq·g-1). In both species, HM was one of the least toxic samples (0.421 and 0.166 CTX1B Eq·g-1). The liver stood out for its high CTX concentration (3.643 and 2.718 CTX1B Eq·g-1), as were the gonads (1.620 and 0.992 CTX1B Eq·g-1). According to these results, the caudal muscle next to the tail is a reliable part for use in determining the toxicity of fish flesh to guarantee its safe consumption. Additionally, the analysis of the liver and gonads could provide further information on doubtful specimens, and be used for CTX monitoring in areas with an unknown prevalence of ciguatera.


Assuntos
Bass , Intoxicação por Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Intoxicação por Ciguatera/epidemiologia , Peixes , Alimentos Marinhos/análise , Fígado/química
8.
Food Chem ; 418: 135960, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36965390

RESUMO

Ciguatera Poisoning is an emerging risk in the east Atlantic Ocean. Despite characterization efforts, the complete profile of ciguatoxin chemical species in these waters is still unknown. These efforts have been complicated by a lack of reference materials and scarcity of fish contaminated with high levels of ciguatoxins. Development and application of analytical methods with enhanced selectivity and sensitivity is essential for ciguatoxin characterization. Here, we developed an analytical characterization approach using capillary liquid chromatography coupled to high resolution mass spectrometry applied to reference materials obtained from ciguatoxin contaminated fish. Capillary LC coupled mass spectrometry resulted in increased sensitivity leading to the confirmation of C-CTX1 as the principal ciguatoxin present in these samples. We also detected and structurally characterized minor C-CTXs analogues consisting of C-CTX3/4, hydroxy-, didehydro-, and methoxy- metabolites.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/análise , Cromatografia Líquida , Peixes , Espectrometria de Massas , Oceano Atlântico
9.
Chemosphere ; 319: 137940, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36702405

RESUMO

Marine toxins have a significant impact on seafood resources and human health. Up to date, mainly based on bioassays results, two genera of toxic microalgae, Gambierdiscus and Fukuyoa have been hypothesized to produce a suite of biologically active compounds, including maitotoxins (MTXs) and ciguatoxins (CTXs) with the latter causing ciguatera poisoning (CP) in humans. The global ubiquity of these microalgae and their ability to produce (un-)known bioactive compounds, necessitates strategies for screening, identifying, and reducing the number of target algal species and compounds selected for structural elucidation. To accomplish this task, a dereplication process is necessary to screen and profile algal extracts, identify target compounds, and support the discovery of novel bioactive chemotypes. Herein, a dereplication strategy was applied to a crude extract of a G. balechii culture to investigate for bioactive compounds with relevance to CP using liquid chromatography-high resolution mass spectrometry, in vitro cell-based bioassay, and a combination thereof via a bioassay-guided micro-fractionation. Three biologically active fractions exhibiting CTX-like and MTX-like toxicity were identified. A naturally incurred fish extract (Sphyraena barracuda) was used for confirmation where standards were unavailable. Using this approach, a putative I/C-CTX congener in G. balechii was identified for the first time, 44-methylgambierone was confirmed at 8.6 pg cell-1, and MTX-like compounds were purported. This investigative approach can be applied towards other harmful algal species of interest. The identification of a microalgal species herein, G. balechii (VGO920) which was found capable of producing a putative I/C-CTX in culture is an impactful advancement for global CP research. The large-scale culturing of G. balechii could be used as a source of I/C-CTX reference material not yet commercially available, thus, fulfilling an analytical gap that currently hampers the routine determination of CTXs in various environmental and human health-relevant matrices.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Humanos , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Toxinas Marinhas/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
10.
Shokuhin Eiseigaku Zasshi ; 63(5): 190-194, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36328475

RESUMO

Ciguatera fish poisoning (CFP) is recognized as the most frequent seafood poisoning due to the consumption of fish containing the principal toxins, ciguatoxins (CTXs). In Japan, CFP events have been reported annually from Okinawa and Amami Islands, locating subtropical regions. In addition, there have been reported several outbreaks due to consumption of the fish caught from the Pacific coast of the Mainland and they were often caused by the matured spotted knifejaw, Oplegnathus punctatus. As part of our research on CFP in Japan, we investigated CTXs analysis by LC-MS/MS on 176 individuals of O. punctatus (weight: 100-6,350 g, standard length: 13-60 cm) from the coast of the Mainland (Honshu, Shikoku, and Kyushu), Amami, Okinawa, and Ogasawara (Bonin) Islands. CTXs were detected from only two specimens collected from Okinawa. Total CTXs levels of the two specimens were at 0.014 and 0.040 µg/kg, respectively, exceeding FDA guidance level at 0.01 µg CTX1B equivalent/kg. However, they might be little risk of CFP because consuming over 1.5 kg of flesh is needed to develop intoxication. The toxins consisted of CTX1B analogs including CTX1B, 52-epi-54-deoxyCTX1B, CTX4A, and CTX4B, and no CTX3C analogs, supporting the finding that ciguatoxic fishes in Okinawan Waters containing only CTX1B analogs.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Cromatografia Líquida , Japão , Espectrometria de Massas em Tandem , Intoxicação por Ciguatera/epidemiologia , Intoxicação por Ciguatera/etiologia , Peixes
11.
J Agric Food Chem ; 70(40): 12946-12952, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191081

RESUMO

Ciguatera poisoning can occur following the consumption of fish contaminated with trace levels of ciguatoxins (CTXs). These trace levels represent an analytical challenge for confirmation by LC-MS due to matrix interferences and the high instrument sensitivity required. Sample preparation procedures are laborious and require extensive cleanup procedures to address these issues. The application of a selective isolation technique employing boronate affinity polymers was therefore investigated for the capture of vic-diol-containing Caribbean and Pacific CTXs from fish extracts. A dispersive SPE procedure was developed where nearly complete binding of CTXs in fish extracts occurred with boric acid gel in less than 1 h. Release of the bound CTXs resulted in >95% recovery of C-CTX1/2, C-CTX3/4, CTX1B, 54-deoxyCTX1B, and 52-epi-54-deoxyCTX1B from the extracts. This selective extraction tool has the potential to greatly simplify both analytical sample preparation and preparative extraction and isolation of CTXs for structure elucidation and production of standards.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Animais , Região do Caribe , Cromatografia Líquida , Ciguatoxinas/análise , Ciguatoxinas/química , Peixes , Polímeros
12.
Toxins (Basel) ; 14(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35878223

RESUMO

Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. Ciguatoxins and maitotoxins, the two major toxins produced by Gambierdiscus, act on voltage-gated channels and TRPA1 receptors, consequently leading to poisoning and even death in both humans and animals. Over the past few decades, the occurrence and geographic distribution of CFP have undergone a significant expansion due to intensive anthropogenic activities and global climate change, which results in more human illness, a greater public health impact, and larger economic losses. The global spread of CFP has led to Gambierdiscus and its toxins being considered an environmental and human health concern worldwide. In this review, we seek to provide an overview of recent advances in the field of Gambierdiscus and its associated toxins based on the existing literature combined with re-analyses of current data. The taxonomy, phylogenetics, geographic distribution, environmental regulation, toxin detection method, toxin biosynthesis, and pharmacology and toxicology of Gambierdiscus are summarized and discussed. We also highlight future perspectives on Gambierdiscus and its associated toxins.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Doenças Transmitidas por Alimentos , Animais , Ciguatoxinas/análise , Ciguatoxinas/toxicidade , Dinoflagelados/genética , Peixes , Humanos
13.
Mar Drugs ; 20(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736151

RESUMO

Gambierdiscus and Fukuyoa dinoflagellates produce a suite of secondary metabolites, including ciguatoxins (CTXs), which bioaccumulate and are further biotransformed in fish and marine invertebrates, causing ciguatera poisoning when consumed by humans. This study is the first to compare the performance of the fluorescent receptor binding assay (fRBA), neuroblastoma cell-based assay (CBA-N2a), and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the quantitative estimation of CTX contents in 30 samples, obtained from four French Polynesian strains of Gambierdiscus polynesiensis. fRBA was applied to Gambierdiscus matrix for the first time, and several parameters of the fRBA protocol were refined. Following liquid/liquid partitioning to separate CTXs from other algal compounds, the variability of CTX contents was estimated using these three methods in three independent experiments. All three assays were significantly correlated with each other, with the highest correlation coefficient (r2 = 0.841) found between fRBA and LC-MS/MS. The CBA-N2a was more sensitive than LC-MS/MS and fRBA, with all assays showing good repeatability. The combined use of fRBA and/or CBA-N2a for screening purposes and LC-MS/MS for confirmation purposes allows for efficient CTX evaluation in Gambierdiscus. These findings, which support future collaborative studies for the inter-laboratory validation of CTX detection methods, will help improve ciguatera risk assessment and management.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Cromatografia Líquida , Intoxicação por Ciguatera/etiologia , Ciguatoxinas/análise , Dinoflagelados/química , Polinésia , Espectrometria de Massas em Tandem
14.
Toxins (Basel) ; 14(6)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35737060

RESUMO

Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) or high-resolution MS (LC-HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC-MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard's reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC-MS/MS and LC-HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1-GRT derivatization strategy mitigates many of the shortcomings of current LC-MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes.


Assuntos
Compostos de Amônio , Intoxicação por Ciguatera , Ciguatoxinas , Aminação , Animais , Região do Caribe , Cromatografia Líquida , Ciguatoxinas/análise , Peixes , Espectrometria de Massas em Tandem/métodos
15.
Mar Drugs ; 20(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447924

RESUMO

Ciguatera poisoning (CP) results from the consumption of coral reef fish or marine invertebrates contaminated with potent marine polyether compounds, namely ciguatoxins. In French Polynesia, 220 fish specimens belonging to parrotfish (Chlorurus microrhinos, Scarus forsteni, and Scarus ghobban), surgeonfish (Naso lituratus), and groupers (Epinephelus polyphekadion) were collected from two sites with contrasted risk of CP, i.e., Kaukura Atoll versus Mangareva Island. Fish age and growth were assessed from otoliths' yearly increments and their ciguatoxic status (negative, suspect, or positive) was evaluated by neuroblastoma cell-based assay. Using permutational multivariate analyses of variance, no significant differences in size and weight were found between negative and suspect specimens while positive specimens showed significantly greater size and weight particularly for E. polyphekadion and S. ghobban. However, eating small or low-weight specimens remains risky due to the high variability in size and weight of positive fish. Overall, no relationship could be evidenced between fish ciguatoxicity and age and growth characteristics. In conclusion, size, weight, age, and growth are not reliable determinants of fish ciguatoxicity which appears to be rather species and/or site-specific, although larger fish pose an increased risk of poisoning. Such findings have important implications in current CP risk management programs.


Assuntos
Bass , Intoxicação por Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/análise , Ciguatoxinas/toxicidade , Recifes de Corais , Peixes , Polinésia , Alimentos Marinhos/análise
16.
Toxins (Basel) ; 14(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35324705

RESUMO

Ciguatera is one of the most widespread food poisonings caused by the ingestion of fish contaminated by ciguatoxins (CTXs). Snapper and grouper with high palatable and economic value are the primary food source and fish species for exportation in the Republic of Kiribati, but they are highly suspected CTX-contaminated species due to their top predatory characteristics. In this study, 60 fish specimens from 17 species of snappers and groupers collected from the Kiritimati Island and Marakei Island of the Republic of Kiribati were analyzed using mouse neuroblastoma (N2a) assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine Pacific CTX-1, -2 and -3 (P-CTX-1, -2 and -3). The LC-MS/MS results show that CTXs were detected in 74.5% of specimens from Marakei Island and 61.5% of specimens from Kiritimati Island. The most toxic fish Epinephelus coeruleopunctatus from Marakei Island and Cephalopholis miniata from Kiritimati Island were detected as 53-fold and 28-fold P-CTX-1 equivalents higher than the safety level of 10 pg/g P-CTX-1 equivalents, respectively. CTX levels and composition profiles varied with species and location. The N2a results suggested that fish specimens also contain high levels of other CTX-like toxins or sodium channel activators. The distribution patterns for ciguatoxic fish of the two islands were similar, with fish sampled from the northwest being more toxic than the southwest. This study shows that groupers and snappers are high-risk species for ciguatera in the Republic of Kiribati, and these species can further be used as indicator species in ciguatera endemic areas for risk assessment.


Assuntos
Bass , Intoxicação por Ciguatera , Ciguatoxinas , Animais , Cromatografia Líquida , Intoxicação por Ciguatera/epidemiologia , Intoxicação por Ciguatera/etiologia , Ciguatoxinas/análise , Ciguatoxinas/toxicidade , Peixes , Camundongos , Espectrometria de Massas em Tandem
17.
Toxins (Basel) ; 14(1)2022 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35051023

RESUMO

The Canary Islands are a ciguatoxin (CTX) hotspot with an established official monitoring for the detection of CTX in fish flesh from the authorised points of first sale. Fish caught by recreational fishermen are not officially tested and the consumption of toxic viscera or flesh could lead to ciguatera poisoning (CP). The objectives of this study were to determine the presence of CTX-like toxicity in relevant species from this archipelago, compare CTX levels in liver and flesh and examine possible factors involved in their toxicity. Sixty amberjack (Seriola spp.), 27 dusky grouper (Epinephelus marginatus), 11 black moray eels (Muraena helena) and 11 common two-banded seabream (Diplodus vulgaris) were analysed by cell-based assay (CBA) and Caribbean ciguatoxin-1 (C-CTX1) was detected by liquid chromatography mass spectrometry (LC-MS/MS) in all these species. Most of the liver displayed higher CTX levels than flesh and even individuals without detectable CTX in flesh exhibited hepatic toxicity. Black moray eels stand out for the large difference between CTX concentration in both tissues. None of the specimens with non-toxic liver showed toxicity in flesh. This is the first evidence of the presence of C-CTX1 in the common two-banded seabream and the first report of toxicity comparison between liver and muscle from relevant fish species captured in the Canary Islands.


Assuntos
Ciguatoxinas/análise , Peixes , Contaminação de Alimentos/análise , Fígado/química , Músculo Esquelético/química , Alimentos Marinhos/análise , Animais , Cromatografia Líquida , Espanha , Especificidade da Espécie , Espectrometria de Massas em Tandem
18.
Food Chem ; 374: 131687, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34891085

RESUMO

Ciguatoxins (CTXs) are marine neurotoxins produced by microalgae of the genera Gambierdiscus and Fukuyoa. CTXs may reach humans through food webs and cause ciguatera fish poisoning (CFP). An immunosensor for the detection of Pacific CTXs in fish was developed using multiwalled carbon nanotube (MWCNT)-modified carbon electrodes and a smartphone-controlled potentiostat. The biosensor attained a limit of detection (LOD) and a limit of quantification (LOQ) of 6 and 27 pg/mL of CTX1B, respectively, which were 0.001 and 0.005 µg/kg in fish flesh. In the analysis of fish samples from Japan and Fiji, excellent correlations were found with sandwich enzyme-linked immunosorbent assays (ELISAs), a cell-based assay (CBA) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Stability of at least 3 months at -20 °C was predicted. In just over 2 h, the biosensor provides reliable, accurate and precise Pacific CTX contents in fish extracts, being suitable for monitoring and research programs.


Assuntos
Técnicas Biossensoriais , Ciguatoxinas , Animais , Cromatografia Líquida , Ciguatoxinas/análise , Humanos , Imunoensaio , Smartphone , Espectrometria de Massas em Tandem
19.
Environ Res ; 207: 112164, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627798

RESUMO

Invasive species can precede far-reaching environmental and economic consequences. In the Hawai'ian Archipelago Cephalopholis argus (family Serranidae) is an established invasive species, now recognized as the dominant local reef predator, negatively impacting the native ecosystem and local fishery. In this region, no official C. argus fishery exists, due to its association with Ciguatera seafood poisoning (CP); a severe intoxication in humans occurring after eating (primarily) fish contaminated with ciguatoxins (CTXs). Pre-harvest prediction of CP is currently not possible; partly due to the ubiquitous nature of the microalgae producing CTXs and the diverse bioaccumulation pathways of the toxins. This study investigated the perceived risk of CP in two geographically discrete regions (Leeward and Windward) around the main island of Hawai'i, guided by local fishers. C. argus was collected and investigated for CTXs using the U.S. Food and Drug Administration (FDA) CTX testing protocol (in vitro neuroblastoma N2a-assay and LC-MS/MS). Overall, 76% of fish (87/113) exceeded the FDA guidance value for CTX1B (0.01 ng g-1 tissue equivalents); determined by the N2a-assay. Maximum CTX levels were ≅2× higher at the Leeward vs Windward location and, respectively, 95% (64/67) and 54% (25/46) of fish were positive for CTX-like activity. Fisher persons and environmental understandings, regarding the existence of a geographic predictor (Leeward vs Windward) for harvest, were found to be (mostly) accurate as CTXs were detected in both locations and the local designation of C. argus as a risk for CP was confirmed. This study provides additional evidence that supports the previous conclusions that this species is a severe CP risk in the coastal food web of Hawai'i, and that ocean exposure (wave power) may be a prominent factor influencing the CTX content in fish within a hyperendemic region for CP.


Assuntos
Bass , Intoxicação por Ciguatera , Ciguatoxinas , Animais , Cromatografia Líquida , Intoxicação por Ciguatera/epidemiologia , Ciguatoxinas/análise , Ecossistema , Pesqueiros , Peixes/metabolismo , Havaí , Espectrometria de Massas em Tandem
20.
Harmful Algae ; 110: 102130, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887010

RESUMO

Benthic dinoflagellates of the genus Gambierdiscus produce ciguatoxins, compounds that when metabolized in fish and consumed by humans cause ciguatera poisoning (CP). This syndrome, which is widespread in tropical and subtropical regions, has recently been reported also in subtropical-temperate latitudes such as the Canary Islands where CP events have been regularly detected since 2004. This study examined the effect of temperature on the growth of Gambierdiscus isolated from Canary waters: G. australes, G. caribaeus, G. carolinianus, G. excentricus, and G. silvae. From the temperature vs. growth curves, the maximum growth (µm), optimum temperature range for growth (Topt), and the temperature yielding maximum growth (Tm) were estimated for each species. The results revealed temperature-dependent differences in the growth parameters. G. caribaeus had the highest Tm and Topt, followed by G. australes, G. carolinianus, G. silvae, and G excentricus. G. australes tolerated the widest range of temperatures (from 15 °C to 29 °C), which may explain its broader geographic distribution, both worldwide and across the Canary archipelago. Neither G. excentricus nor G. silvae survived at 29 °C whereas G. caribaeus reached mean growth rates (± standard deviation) up to 0.19 ± 0.01 div.day-1 at that temperature, followed by G. australes (0.16 ± 0.01 div.day-1) and G. carolinianus (0.14 ± 0.04 div.day-1). G. caribaeus showed no measurable growth at 19°C, whereas G. excentricus and G. silvae along with G. australes appeared as the species better adapted to lower temperatures. In an intraspecific variability study of 12 strains of G. australes, the mean (± standard deviation) of µm and Tm were 0.17 ± 0.01 div.day-1 and 27.7 ± 0.5 °C, respectively. An analysis of the shapes and position of the cell nuclei at the different temperatures showed that nuclei characteristic of vegetative cells appeared mainly at 26 °C but extreme temperatures resulted in nuclei with a more variable morphology. The presence of putative zygotes at extreme temperatures (17 °C, 19 °C and 29 °C) suggests that sexual reproduction is promoted as an adaptive strategy which could play an important role in the expansion of geographic distribution of Gambierdiscus species.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Ciguatoxinas/análise , Espanha , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...